

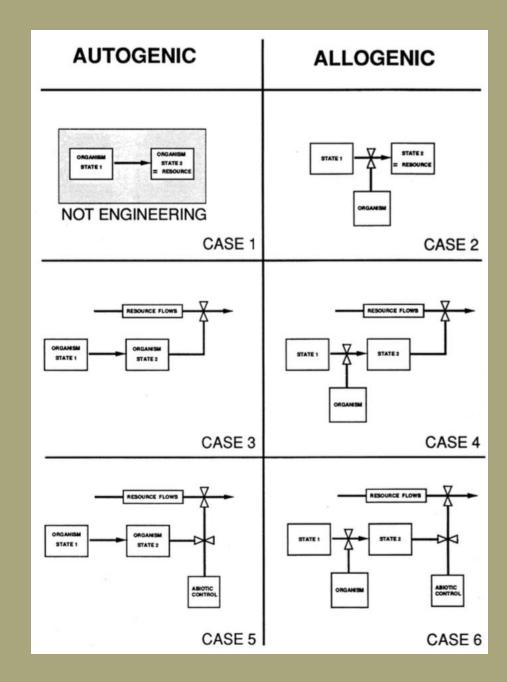
Animal Ecosystem Engineering Using Plants

Background

Interactions between organisms determine the distribution and abundance of species in a community

Direct trophic interactions have been extensively studied

Only fairly recently has the effects of environmental modifications on community interactions been explored


Organisms as ecosystem engineers

Clive G. Jones, John H. Lawton and Moshe Shachak

OIKOS 69: 373-386. Copenhagen 1994

Table 1 Examples of organi	me actino se accesse	tem engineers. Classification as	cording to Fig. 1. Additional examples are	discussed in the text	Tab. 1. (cont.)				
Organism	Habitat	Activity	Impact	Refs.	Organism	Habitat	Activity		Impact
Case 2 (allogenic) American alligators, Alligator mississippiensis	Everglades National Park	create wallows	retain water in droughts; provide refuges for fish, fisheating birds, etc.	Finlayson & Moser (1991)	Marine zooplankton	ubiquitous	fiter living, dead organ and inorganic (e.g. clay particles, and concentra into faecal pellets	0	vertical transport and exchange of
Rabbits, Oryctolagus cuniculus, badgers, Meles meles	Europe	dig extensive burrows (rabbit warrens, badger setts)	burrows occupied by other species, e.g fox, Vulpes vulpes, and by many invertebrates	Southern (1964); Neal & Roper (1991)	Fiddler crab, Uca pugnax	New England salt marsh	dig burrows		increase soil drainage and oxidation- reduction potential; increase decomposition rates; increase primary production at intermediate tidal
Case 3 (autogenic) Marine phytoplankton	Gulf of Maine	blooms of phytoplankton particles scatter and absorb light in upper layers of water column	enhance warming of surface waters that may initiate development of thermocline	Townsend et al. (1992)	European periwinkle, Littorina littorea	inkle, New England bulldoze sediments from preve r rocky beach hard substrates hence algal engin		heights prevent sediment accumulation and hence growth and establishment of algal canopy; algae are case 3 engineers and further increase	
Microalgae in sea ice	Antarctica	scatter and absorb light within ice and underlying seawater; reduce strength of ice.	enhance melting and break up of ice	Buynitskiy (1986); Arrigo et al. (1991)					sedimentation rates; faunal composition markedly different with and without snails
Freshwater phytoplankton	Lake St. George, Ontario	intercept light in upper water column; small algal spp. more effective than	light interception leads to shallower mixing depth, lower metalimnetic temperatures and lower heat content	Mazumder et al. (1990)	Snails, Euchondrus spp.	Negev desert	eat endolithic lichens and the rock they grow in		increase rate of nitrogen cycling, soil formation and rock erosion
Cyanobacteria and other nonvascular plants	desert and semi-desert soils	large spp. exude mucilaginous organic compounds	glue the organisms, organic matter and soil particles together to form a microphytic crust; change infiltration, percolation, retention and evaporation of water; reduce soil erosion; affect seedling emergence	West (1990)	Bagworm caterpillars, ?Penestoglossa sp.	Golden Gate Highlands, South Africa	('bags') from quartz crystals		small increase in erosion rate, nutrier cycling and soil formation
					Mound-building termites, Isoptera	widespread in tropics and subtropics	mound and subterranean gallery construction; redistribution of soil particles		change mineral and organic composition of soils; alter hydrology and drainage
Bog moss, Sphagnum spp. Submerged macrophytes	Northern and western Britain freshwater lakes.	build 'blanket' and 'raised' bogs via accumulated peat grow to create weed beds	major changes in hydrology, pH, and topography attenuate light; steepen vertical	Tansley (1949) Carpenter & Lodge	Ants, Formicidae	ubiquitous	nest and subterranean gallery construction; redistribution of soil		change local structure and composition of soils; alter 'above nest' vegetation; produce microsite
	ponds and rivers		temperature gradient; retard flow; enhance sedimentation; oxygenate rhizosphere	(1986)	Earthworms, Lumbricidae, Megascolecidae	ubiquitous	particles burrowing, mixing and casting		enrichment change mineral and organic composition of soils; affect nutrient
Forest trees (broad-leaved and coniferous)	Hubbard Brook Experimental Forest, New	shed branches and trunks into streams	create debris dams; alter morphology and stability of stream channels, storage and transport of dissolved organic matter and sediments; different tree species may create dams which differ in persistence	Likens & Bilby (1982); Hedin et al. (1988)					cycling; alter hydrology and drainage affect plant population dynamics and community composition
	Hampshire				Blind mole rats, Spalax ehrenbergi	Israel	digging and tunnelling		move large quantities of soil; increas aeration; create distinctive ecosystem
Higher plants	nts ubiquitous dead le as litte		alter microenvironment of soil; change surface structure, affecting drainage, and transfer of heat and	Facelli & Pickett (1991)	Mole rats, Bathyergidae (several genera)	South African lowland fynboss	digging and tunnelling		create impressive, cratered landscapes with effects on soil formation, plant productivity and species composition
			gasses; act as physical barrier for seeds and seedlings; numerous impacts on structure and composition of plant communities		Prairie dogs, Cynomys spp.	North American short and mixed grass prairie	continual intense disruption by burrowing, creating soil mounds		change physical and chemical properties of soil persisting for 100 1000s of years
Terrestrial plants in 29 families, with >1,500 species Case 4 (allogenic)	ubiquitous	grow structures (modified leaves, leaf axils etc.) that impound water	create small aquatic habitats, supporting a highly specialised insect fauna	Fish (1983)	Pocket gophers, Geomys bursarius	North American grasslands and arid shrublands	construct tunnels and move soil to surface mounds	r c	Iter patterns and rates of soil levelopment, nutrient availability and incrotopography; change plant lemography, diversity and primary weductivity; affect behaviour and bundance of other herbivores
Marine meiofauna (protozoa and representatives of many invertebrate phyla)	ubiquitous	biodeposition, bioturbation, porewater circulation, and faecal pellet production	change physical, chemical and biological properties of sediments; change direction and magnitude of nutrient fluxes; increase oxygenation of sediments	Reichelt (1991)	Indian crested porcupine, Hystrix indica	Negev desert	digging for food	di; ac wa	g up to 2-3 holes m ⁻² ; diggings cumulate organic matter, runoff iter; create favourable sites for seec rmination
Marine burrowing macrofauna	ubiquitous	burrow into and redistribute sediments; bioturbation; burrow ventilation	or sediments create dynamic sediment mosaics; actively transport solutes into burrows; increase oxygenation of sediments; stimulate microflora; increase decomposition rates	Anderson & Kristensen (1991); de Wilde (1991); Meadows & Meadows (1991b)	Elephants, Loxodonta africana	East African woodland and savannah	physical disturbance and destruction of trees and shrubs	ali fo of in	idespread vegetation changes; teration of fire regime; effects on od supply and population dynamics other animals; ultimately changes soil formation, riparian zones, and ogeochemical cycling
				(cont.)					
OIKOS 69:3 (1994)				375	376				

Organism	Habitat	Activity	Impact	Refs.
Case 5 (autogenic) and cas	e 6 (allogenic) (es	amples combining elements of	both)	
Crustose coralline algae, Porolithon, Lithophyllum	coral reefs	overgrow and cement together detritus on outer algal ridge of barrier reef	break force of water and protect corals against major wave action; effect via own bodies (case 5) and secretion of 'cement' (case 6)	Anderson (1992)
Ribbed mussels, Geukensia demissa	Rhode Island Spartina salt marsh	secrete byssal threads, and form dense mussel beds	on marsh edge, dense beds of mussels (case 5) and byssal threads (case 6) bind and protect sediments and prevent physical erosion and disturbance, e.g. by storms	Bertness (1984b)

Received: 27 July 2017 Accepted: 17 January 2018

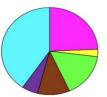
DOI: 10.1111/1365-2656.12819

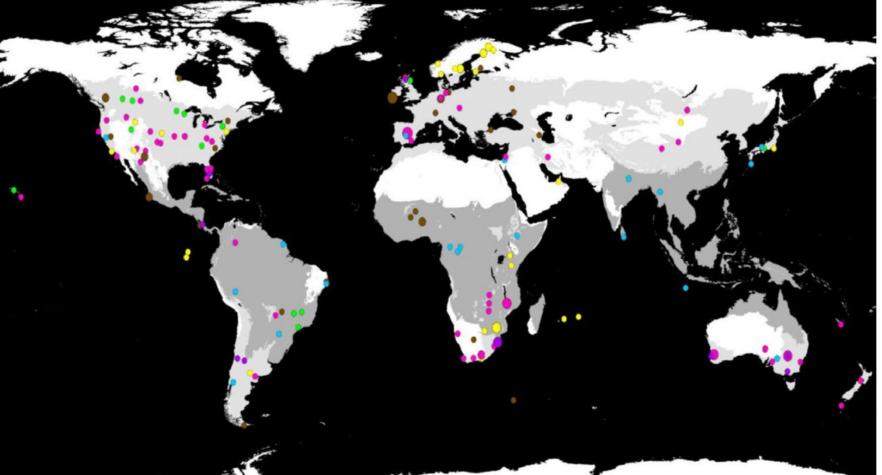
REVIEW

Journal of Animal Ecology

A global database and "state of the field" review of research into ecosystem engineering by land animals

Nicole V. Coggan¹ | Matthew W. Hayward^{2,3} | Heloise Gibb¹

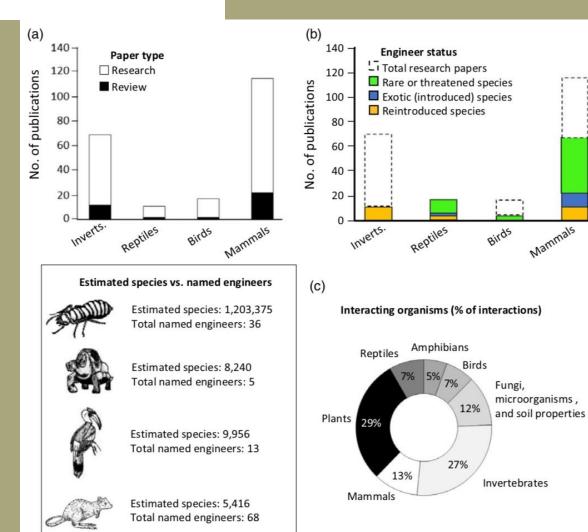

0 1 2 3 **4 Engineer function** O Burrowing Nesting O Herbivory ○ Leaf structure ○ Trophic interaction Habitat (climate) group □ Dry/arid Tropical/subtropical


Cool/temperate Water

Global distribution of ecosystem engineering field research

Number of sites per location % of engineering functions researched in habitat (climate) groups DRY/ARID COOL/TEMPERATE (50% of all studies) (31% of all studies) Soil manipulation

TROPICAL/ SUBTROPICAL (19% of all studies)


DOI: 10.1111/1365-2656.12819

REVIEW

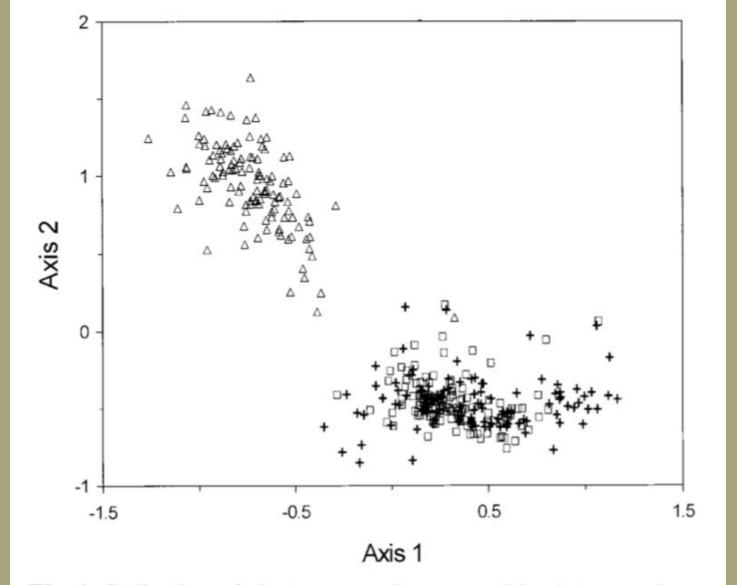
Journal of Animal Ecology

A global database and "state of the field" review of research into ecosystem engineering by land animals

Nicole V. Coggan¹ Matthew W. Hayward^{2,3} Heloise Gibb¹

FIGURE 1 Summaries of (a) publications reporting or reviewing ecosystem engineering interactions, with global species estimates and number of named engineer species (n.b. some publications did not specify a species name), (b) count of publications where the engineer species is identified as rare, exotic or reintroduced and (c) proportion of interactions with other taxa reported by research [Colour figure can be viewed at wileyonlinelibrary.com]

Beavers and Their Dams


Justin P. Wright · Clive G. Jones Alexander S. Flecker

An ecosystem engineer, the beaver, increases species richness at the landscape scale

Received: 3 December 2001 / Accepted: 25 February 2002 / Published online: 24 April 2002 © Springer-Verlag 2002

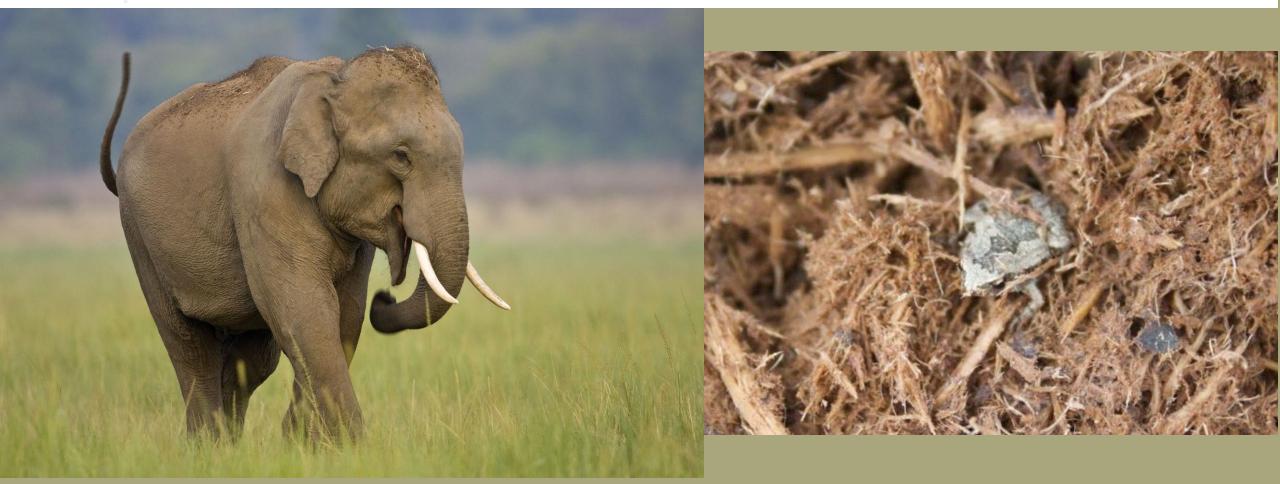


Fig. 1 Ordination of plant community composition between riparian zone habitats. Ordination of plots based on presence of species using non-metric multidimensional scaling. \triangle Forested riparian zone habitat, \Box alder habitat, \clubsuit meadow habitat

Shit Happens (to be Useful)! Use of Elephant Dung as Habitat by Amphibians

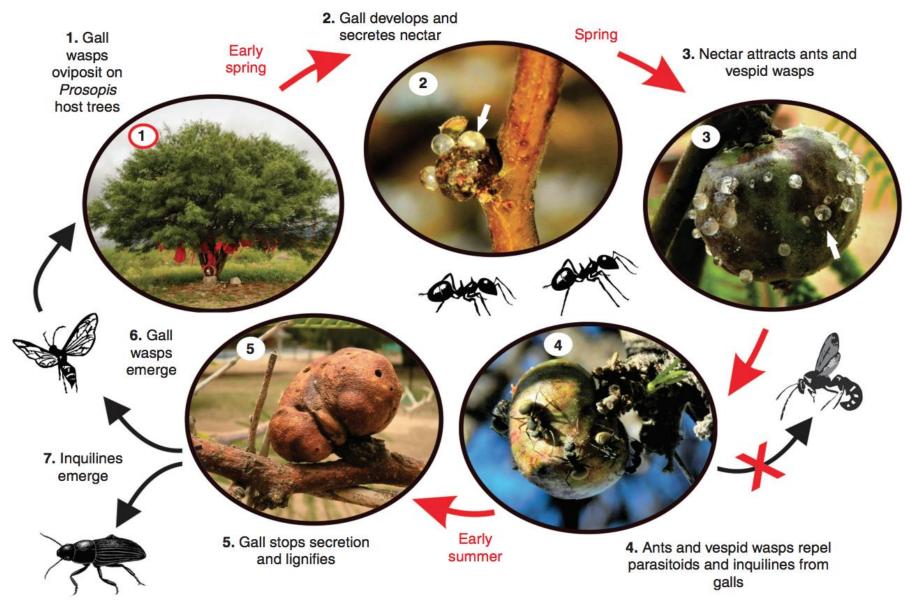
Ahimsa Campos-Arceiz¹

Brief Introduction to Galls

Creosote gall induced by galling fly *Asphondylia auripila*

Maple Bladdergalls induced by galling mite *Vasates quadripedes*

Horned Oak Gall induced by cynipid wasp *Callirhytis cornigera*



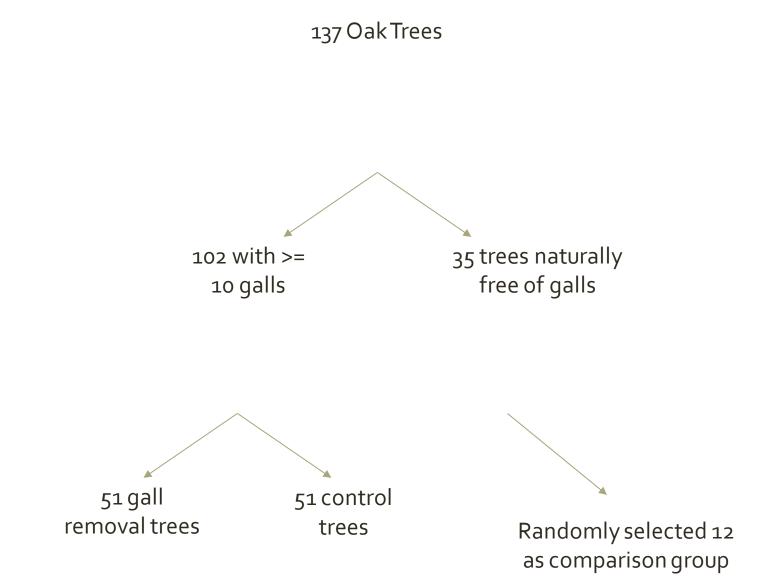
PART OF A SPECIAL ISSUE ON MORPHOLOGY AND ADAPTATION Sugary secretions of wasp galls: a want-to-be extrafloral nectar?

Adriana Aranda-Rickert^{1,*}, Carolina Rothen¹, Patricia Diez², Ana María González³ and Brigitte Marazzi⁴

Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees

WILLIAM C. WETZEL^{1,4,7}, ROBYN M. SCREEN^{1,5}, IVANA LI², JENNIFER MCKENZIE^{3,6}, KYLE A. PHILLIPS^{1,3}, MELISSA CRUZ², WENBO ZHANG¹, AUSTIN GREENE¹, ESTHER LEE¹, NURAY SINGH¹, CAROLYN TRAN¹ AND LOUIE H. YANG²

Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees


WILLIAM C. WETZEL^{1,4,7}, ROBYN M. SCREEN^{1,5}, IVANA LI², JENNIFER MCKENZIE^{3,6}, KYLE A. PHILLIPS^{1,3}, MELISSA CRUZ², WENBO ZHANG¹, AUSTIN GREENE¹, ESTHER LEE¹, NURAY SINGH¹, CAROLYN TRAN¹ AND LOUIE H. YANG²

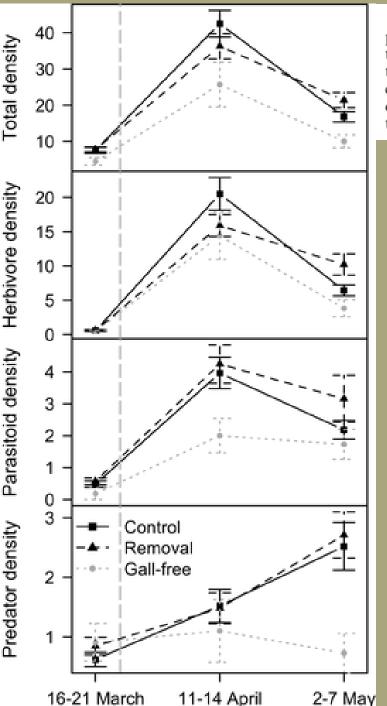
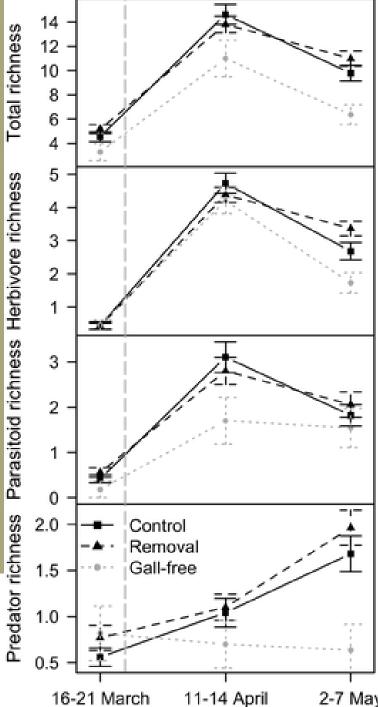
Research Questions 1. How does persistent habitat engineering influence community members that don't directly interact with the gall?

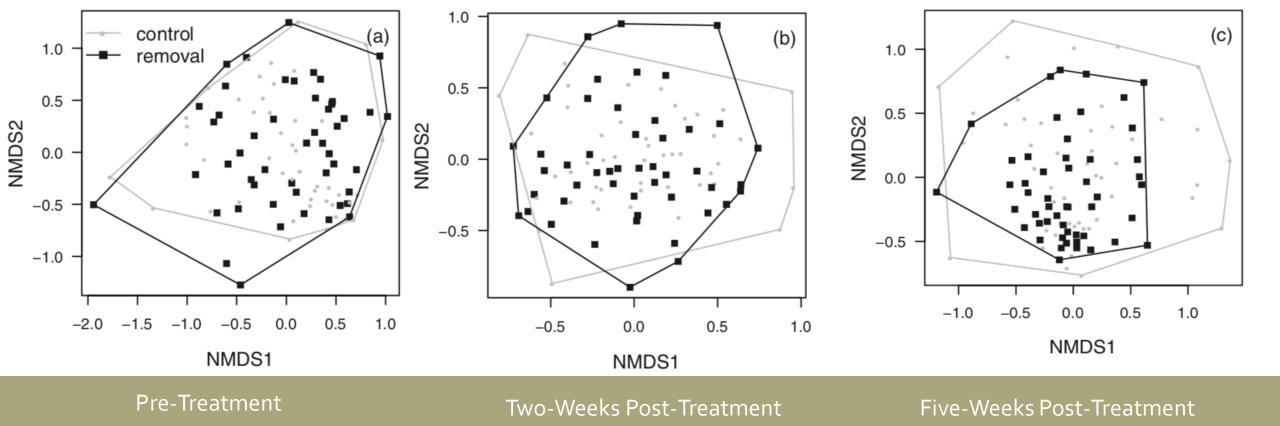
2. How does persistent habitat engineering influence the seasonal community assembly process?

Experimental Design

Overwintering Inhabitants

• Evidence of *Salticid* spiders in 66% of senesced galls


FIG. 2. Mean number of all arthropods, herbivores, parasitoids, and predators in sweep samples by treatment and time. Control trees are squares with solid lines, removal trees are triangles with dashed lines, and naturally gall-free trees are circles with gray dotted lines. Error bars are \pm SE. Vertical, gray dashes separate the pre-treatment/pre-budburst sample from the post-treatment/post-budburst samples.

Sampling Results

- Pre-Treatment, experimental trees had similar densities and richness
- Control trees had a significantly larger decrease in total arthropod and herbivore density and richness from 2nd to 3rd sample
- Naturally gall-free trees had significantly lower density and richness of herbivores and total arthropods than the experimental trees

FIG. 3. Mean arthropod, herbivore, parasitoid, and predator morphospecies richness in sweep samples by treatment and time. Control trees are squares with solid lines, removal trees are triangles with dashed lines, and naturally gall-free trees are circles with gray dotted lines. Error bars are \pm SE. Vertical, gray dashes separate the pre-treatment/pre-budburst sample from the post-treatment/post-budburst sample.

Arthropod Community Composition

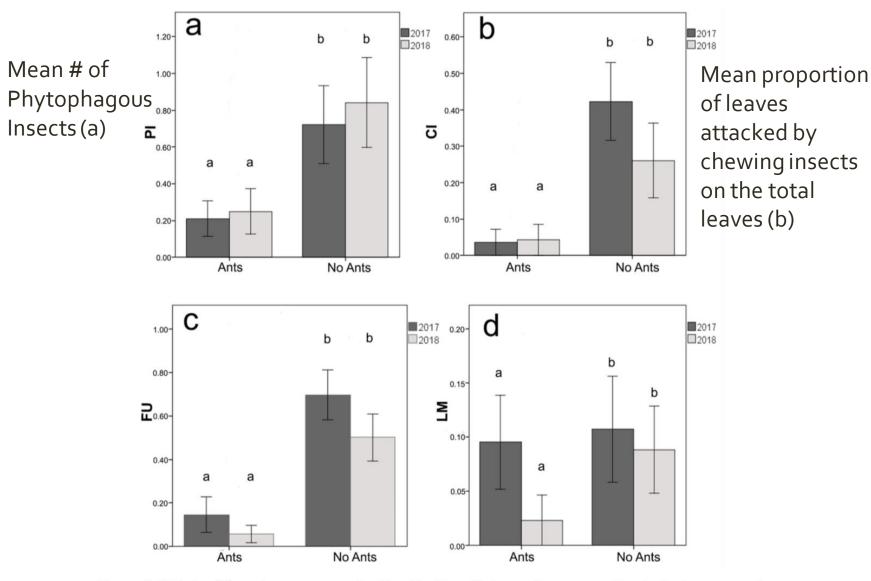

• Beta diversity was significantly higher among control trees compared to removal trees

FIG. 4. Nonmetric multidimensional scaling ordinations for arthropod communities on the removal and control trees in the (a) pre-treatment sampling and in the samplings (b) two and (c) five weeks post-treatment. Mean community composition did not differ between treatments in any sampling. In the third sample (c), control trees had significantly higher beta diversity (multivariate dispersion) than did removal trees. Three trees with communities >2 standard deviations from the mean were held out of each figure because those communities were so different they obscured variation among the rest of the communities. Inclusion or exclusion of these communities did not influence the outcome of analyses. Stress is 0.19, 0.25, and 0.23, respectively.

Conclusions

- By engineering galls in a summer, the gall wasp has an influence on the overwintering community on oak trees that cascades to ultimately change the arthropod community in future growing seasons, and these effects will remain present for as long as the gall stays attached to the tree.
- The increase in herbivore density after gall removal suggests that the jumping spiders commonly found in these galls play an important role in this community
- The consistently low densities of herbivores on gall free trees suggest that these trees may be poor-quality hosts for both herbivores and gall wasps

Giannetti et al. 2019

Figure 9. Effects of the ant presence on plant health. The effects are shown according to the two years of sampling (2017–2018). (**a**) PI: mean number of Phytophagous Insects, (**b**) CI: mean proportion of leaves attacked by chewing insects on the total leaves, (**c**) FU: mean proportion of leaves attacked by Fungi on the total leaves, (**d**) LM: mean proportion of leaves attacked by leaf miners on the total leaves. The SE interval is shown for each bar. The bars with the same letter are not statistically different (Two-way ANOVA, see text for further details).

Indirect effects of ecosystem engineering by insects in a tropical liana

Nathália Ribeiro Henriques¹ · Fernanda Cintra² · Cássio Cardoso Pereira¹ · Tatiana Cornelissen^{1,2,3}

Received: 25 June 2018 / Accepted: 14 November 2018 © Springer Nature B.V. 2018

Research Questions

- 1. Does the presence of shelters increase the frequency, richness and abundance of arthropods on plants?
- 2. Does the type and number of shelters influence secondary colonization and use of shelters?
- 3. How does shelter presence and number influence herbivory levels experienced by plants?

Experimental Design

Experiment 1 Experiment 2 30 plants w/o 20 plants w/o leaf rolls leaf rolls 15 w/ artificial 10 w/ Pandemis 15 control 10 w/ artificial 10 control shelters shelters shelters

Experiment 1 Results

Artificial Shelters had 2.2 times greater abundance and 1.5 times greater richness than control plants

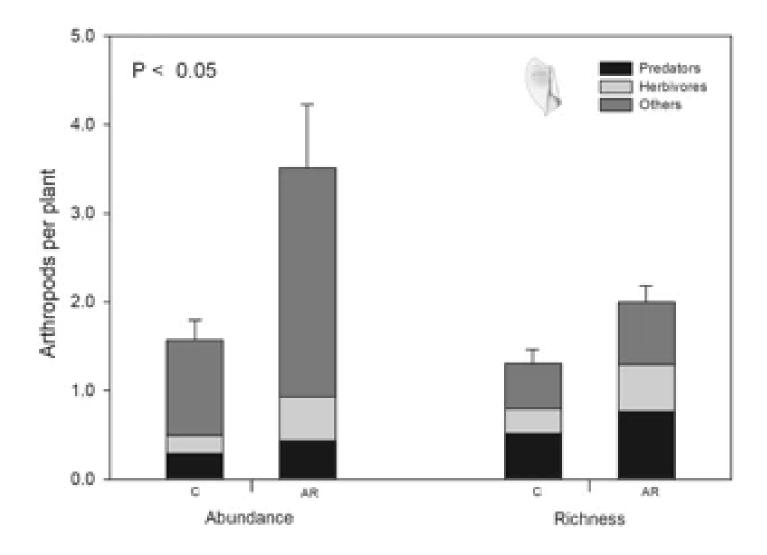


Fig.1 Arthropod abundance and richness (mean ± SE) in control plants (unaltered leaves) and artificially rolled leaves (shelters) of *Trigonia rotundifolia*. C control, AR artificial rolls. Other arthropods include detritivores, omnivores and parasites

Experimental Design

Experiment 1 Experiment 2 30 plants w/o 20 plants w/o leaf rolls leaf rolls 15 w/ artificial 10 w/ Pandemis 15 control 10 w/ artificial 10 control shelters shelters shelters

Experiment 2 Results

 Control plants have higher abundance than plants with either leaf roll

 Natural Shelters have significantly lower richness compared to Artificial Shelters

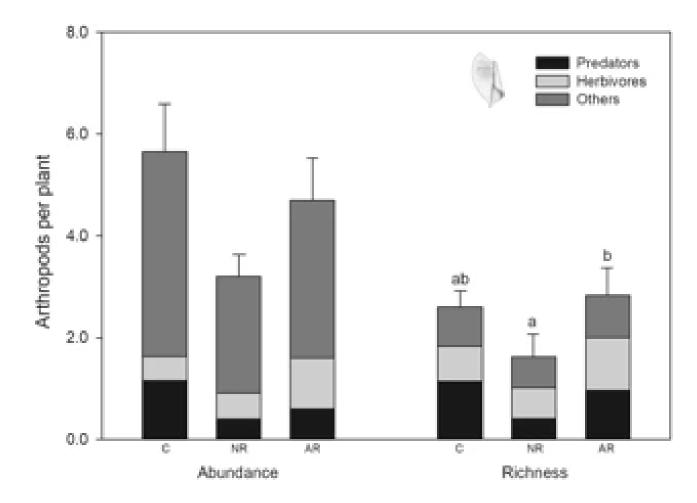
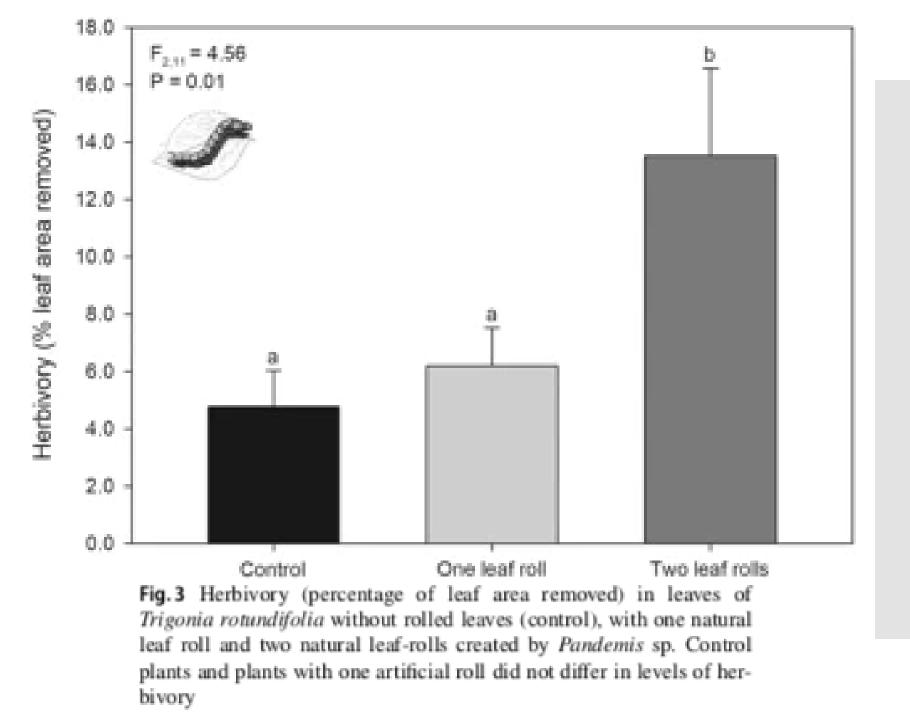



Fig. 2 Arthropod abundance and richness (mean \pm SE) in control plants (unaltered leaves), in plants with natural rolls (leaves rolled by *Pandemis* sp.) and in artificially rolled leaves (shelters) of *Trigonia rotundifolia*. Means followed by the same letters do not differ statistically from each other. C control, NR Natural rolls, AR artificial rolls

Background Herbivory Rates

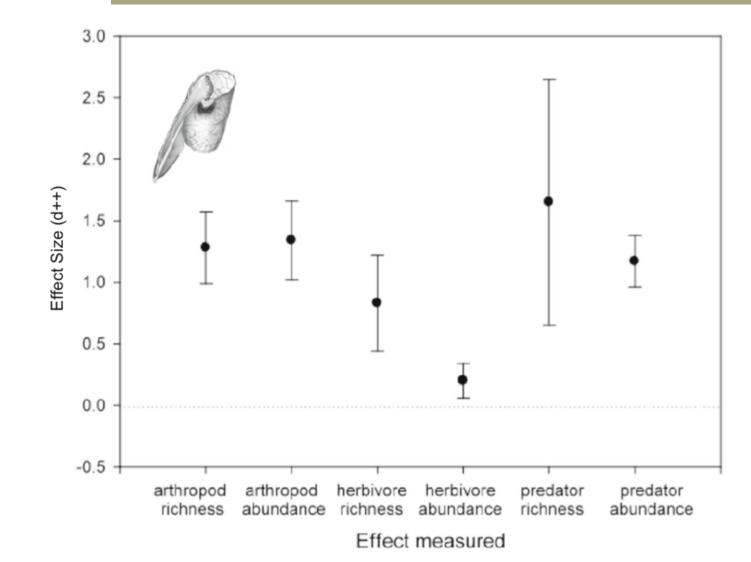
 Plants with 2 leaf rolls experienced 2.8 times higher herbivory

Authors' Conclusions

- The presence of these ephemeral and subtle leaf-rolling structures has a large impact on community structure and increases colonization rates and herbivory levels
- The major indirect effect of these shelters of increasing herbivory is fairly surprising because two main predators of herbivores, ants and spiders, composed of 61% of all arthropods sampled
- Natural leaf rolls did not influence abundance of arthropods, but caused a decrease in richness when compared to the artificial shelters

Neotrop Entomol (2016) 45:1–12 DOI 10.1007/s13744-015-0348-8

FORUM



CrossMark

Shelter-Building Insects and Their Role as Ecosystem Engineers

T CORNELISSEN¹, F CINTRA², JC SANTOS³

Fig 3 Effects of shelters on local patterns of biodiversity from 12 studies that evaluated arthropod, herbivore, and predator richness and abundance inside and outside shelters or in plants with and without natural and artificial shelters. The cumulative effect size is reported for each effect measured with its 95% confidence intervals and effects are significant if confidence intervals do not overlap with zero.

Discussion Questions

- 1. These two habitat modifications are made of different plant materials in different locations on the trees, last on the tree for a drastically different amount of time, and are in different climates and different ecosystems, but both attract mainly predators as secondary colonizers. Why do you think this is? Do you think this is consistent with all shelters created by insects?
- 2. Shelters created by insects have been shown to have large effects on their host plant and the surrounding arthropod community, the outcomes of which depend on the ecological context and specific interactions that stem from that shelter.
 - a) Under what conditions would you expect the net effect on the host plant's fitness to be positive or negative?
 - b) How might the effects of these shelters on the surrounding arthropod community differ when the engineering organism still occupies the shelter as compared to after they have abandoned it? For example, do they attract different densities or species of arthropods, and is the mechanism behind the attraction different?
- 3. Throughout this class we have seen many examples of ant mutualisms facilitated by plant traits such as EFNs and domatia.
 - a) In what ways are the relationships mediated by senesced or developing galls similar or different to those from plant domatia and EFNs? Do you think one is more effective in indirectly reducing herbivory than the others? Would you expect them to attract the same arthropod assemblage?
 - b) The Rudgers 2004 paper we read earlier this semester showed evidence for and concluded that enemies of herbivores shape the evolution of plant EFN traits in wild cotton. With this example in mind how do you think natural selection has caused the evolution of nectar-secretion in galls?